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Derivation of Closed-Form Green’s Functions for a
General Microstrip Geometry

M. Irsadi Aksun and Raj Mittra, Fellow, IEEE

Abstract—The derivation of the closed-form spatial domain
Green’s functions for the vector and scalar potentials is pre-
sented for a microstrip geometry with a substrate and a super-
strate, whose thicknesses can be arbitrary. The spatial domain
Green’s functions for printed circuits are typically expressed
as Sommerfeld integrals, that are inverse Hankel transform of
the corresponding spectral domain Green’s functions, and are
quite time-consuming to evaluate. Closed-form representations
of these Green’s functions in the spatial domains can only be
obtained if the integrands are approximated by a linear com-
bination of functions that are analytically integrable. In this
paper, we show we can accomplish this by approximating the
spectral domain Green’s functions in terms of complex expo-
nentials by using the least square Prony’s method.

I. INTRODUCTION

HE RIGOROUS analysis of printed circuit elements,

such as microstrip interconnects terminated by com-
plex loads, microstrip discontinuities, patch antennas and
printed dipoles, requires the use of the vector and scalar
Green’s functions for a substrate layer backed by a ground
plane. It is well-known that the Green’s functions for mi-
crostrip geometries are improper integrals [1], also called
Sommerfeld integrals, whose integrands are oscillatory
and slowly decaying functions; hence, their calculation is
very time-consuming if not impractical for many practical
configurations of interest. However, recently a novel ap-
proach to circumventing this problem has been developed
[21, [3], one that employs closed-form expressions for the
spatial domain Green’s functions corresponding to the
vector and scalar potentials associated with a horizontal
electric dipole (HED) located over a thick substrate. In
this paper, this technique is extended to a general class of
microstrip geometries with both a substrate and a super-
strate, and the restriction imposed on the thickness of the
substrate is relaxed by slightly modifying the original pro-
cedure.

Using the closed-form expressions for the spatial do-
main Green’s functions in a variational technique, e.g.,
the method of moments (MoM), can result in a substantial
savings of computation time when analyzing planar mi-
crostrip structures. Once the improper infinite range in-
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tegrals for Green’s functions have been expressed in
closed-forms, the rest of the integrals need only be com-
puted over finite supports associated with the basis and
testing functions. In view of this, it would be instructive
to demonstrate the difficulties that one may face in the
application of the conventional moment method approach
to microstrip geometries, before starting the derivation of
the closed-form Green’s functions for the vector and sca-
lar potentials. It is well-known that MoM can be applied
either in the spatial domain [4] or in the spectral domain
[5], the latter being more suitable for planar geometries
unless the spatial domain Green’s functions can be ap-
proximated in closed-forms [6], [7]. Both approaches will
be briefly examined here with a view to comparing their
computational efficiency.

An important issue that merits examination in the MoM
formulation is the convergence problem of the integrals
representing the MoM matrix. The expressions of these
elements in the spatial and spectral domains are given in
Section II and the difficulties associated with their evalu-
ation are discussed. This is followed in Section III with
the derivation of the closed-form Green’s functions of the
vector and scalar potentials for a microstrip geometry with
a substrate and superstrate, whose thickness are arbitrary
A discussion of the technique employed for the derivation
of the closed-form expressions and some numerical ex-
amples are included in Section IV.

II. ComMPUTATIONAL DIFFICULTIES IN THE
CONVENTIONAL METHOD OF MOMENTS

Consider, for the sake of illustration, a general micro-
strip structure shown in Fig. 1 where it is assumed that
the substrate layer extends to infinity in the transverse di-
rections. Let the thickness and the permittivity of the sub-
strate be denoted by d and e,, respectively. Although the
Green’s functions discussed herein pertain to the geome-
try shown in Fig. 1, the comments appearing in this sec-
tion apply to more general geometries as well. A time
convention of e’ has been adopted in this work.

A. Spatial Domain Analysis
The tangential electric fields on the plane of the patch
(z = 0) can be written in terms of the surface current den-

sity J and the Green’s functions for the vector and scalar
potentials G, and G, respectively;

190
= —iwGA * —_—— %V - 1
E, jwGry * J, +jw o [G, J] (1a)
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Fig. 1. A general microstrip structure.

E, = _ijIyqy*Jy"‘jlw(%[Gq*V'J] (1b)
where * implies convolution excepting where it is super-
script denoting complex conjugation of a function.

To solve for the surface current density on the patch by
the MoM, the first step is to expand the surface current
densities in terms of a linear combination of the basis

functions as follows:

=2 Apd (X, y) (2a)

= 21 B,J,(x, y) (2b)

where A, and B, are the unknown coeflicients of the basis
functions, J,, and J,,. Next we substitute (2) into (1) and
test the resulting equations using some testing functions
T,,, and T,,, and a suitable definition of inner product, e.g.,

o= e reen o

Since the testing functions and the tangential electric fields
have nonzero values over complementary regions, the left-
hand sides of (1a) and (1b) become zero after the testing,
and the following algebraic equations are obtained for the
coeflicients 4, and B,:

2 A, {<Tm G2 *Jx,,>
1 d a
+ = (T,., — —
wZ <xm7 ax [Gq * ax ani|>}

1 ] d
+ ;B,,{E<T [G *——J

2B, {<Tym, G4, * Jy,,>
1 d 9
ACTILTN
1 9 3
wl (gl din])] -0

(4b)

-0

(4a)

+

=M
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~ The first inner product term is written below as an ex-

ample

{ Tom» G * Jon )

= SS dx dy T,p(x, ¥) SS dx' dy'

D(T) D(B)
) Gﬁx(x “x',)’ _y,)an(xls }") (5)

where D(T') and D(B) represent the domain of the testing
and basis functions, respectively, and

too ‘
o == | akaPEncLG).  ©

In general, each inner product term in the spatial do-
main, €.g., the one given in (5), is a five-dimensional in-
tegral: one of these is associated with the Green’s func-
tion itself which is an improper integral (Sommerfeld
integral) over an infinite domain and is given in (6); two
of these are convolution integrals; and, the remaining two
are inner products. Since the numerical integration of the
five-dimensional integrals is computationally intensive,
the convolution integral over the Green’s function and the
basis functions is often transferred over to the basis and
testing functions, enabling one to carry out this integral
analytically. With this step, the order of integration can
be reduced to three. In spite of this, the evaluation of the
inner product is still very time-consuming because of the
slow convergence behavior of the integrands of the
Green’s function.

B. Spectral Domain Analysis

The tangential electric field on the plane of the patch
due to the patch currents J, and J, can be expressed in the
spectral domain as

E ke, k) = Zio b, k) Ty, ) + Zoy(kes k) Tk, k)
(7a)
Eyky, k) = Zy (ks k) Jo(kyy k) + Z, (ke k) Tk, k)
(70)

where ~ implies Fourier transforms, and the electric field
Green’s functions Z;; in the spectral domain are express-
ible in closed-forms [8]. The application of the moment
method starts with the expansion of the current densities
as in (2), substitution of the Fourier transforms of these
basis functions in (7), followed by the testing with the
Fourier transforms of the testing functions. Following this
procedure one arrives at the following algebraic equa-
tions:

z:An<7~-'xm’ Zxxjxn> + ZBn<Txma nyjyn> =
(8a)
L)+ EB (KT

> Lyy yn> =0

2 AT, Z,
n

(8b)
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where the inner products are defined over an infinite do-
main. The first inner product term is written as

oo

|| e a7, i

-0

Zo ks, ky) Jenlhey, k). ®

Since the Green’s functions in the spectral domain are ex-
pressible in closed forms, the elements of the MoM ma-
trix become double integrals (9) over infinite ranges.
However, one of the integrations could be transferred over
to the finite domain by transforming the cartesian coor-
dinates into polar coordinates. As a consequence, for mi-
crostrip geometries, the spectral domain moment method
can be more efficient than the conventional spatial domain
approach which requires the computation of triple inte-
grals. The spectral domain approach is usually employed
in conjunction with an acceleration technique in which the
- asymptotic part of the Green’s function is subtracted from
the original Green’s function, and its contribution is cal-
culated either analytically or in a numerically efficient
manner [9], {10]. Even so, this computation is still ex-
pensive because the integrands are oscillatory functions
of the spectral domain variables, and for the self-terms,
for which the observation segment coincides with the
source segment, the convergence is still quite slow.

< Txma Zxxen> =
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1. Obtain the Green’s functions for the vector and sca-
lar potentials in the spectral domain.

Find the quasi-static images (real images) and their
contributions by using the Sommerfeld identity.
Find the surface-wave poles and calculate their con-
tributions analytically.

Approximate the remaining integrand, which is now
a smooth and relatively rapidly decaying function
of the integration variable k, in (10), can be approx-
imated in terms of complex exponentials using the
least square Prony or the Pencil of Function method.

This technique is demonstrated, step by step, for a planar
geometry with a substrate and a superstrate of arbitrary
thicknesses and dielectric constants, as shown in Fig. 2.

A. Green’s Functions for the Vector and Scalar
Potentials in the Spectral Domain

For the geometry shown in Fig. 2, the Green’s func-
tions in the spectral domain can be written as

= ij}cz, Tre(2) (11a)
N 1 N k% 13
= — T
Gq 6tjzkzi [TTE k2 <TTE s jkzi aZ TM>:| (11b)
where

TTE — [e—jk;iz + R;Ee—jk;i(Zdi—Zh—z) + I_Z{Ee‘/k“(”z")]

III. CLosepD-ForRM GREEN’S FUNCTIONS FOR THE (12a)
VECTOR AND SCALAR POTENTIALS k2 1 8
One remedy for the aforementioned convergence prob- Ty, + k2 Trp + 5~ jk,; 8z T
lem is to express the spatial domain Green’s functions in —kuz Bt Py, —jkadi—2h—7)
closed forms so that the inner products become two-di- = [ + (Rrg + R))e ™
mensional integrals over finite ranges (see Section II-A), + (Rip + R )e ket 2m) (12b)
and the time-consuming part of the moment method in the TE 1
spatial domain, which entails the evaluation of the inte- = k2 =
gral representations of the Green’s functions, is com- Ry = k2 [RE: — Rivl (12¢)
pletely avoided. The Sommerfeld integrals for the Green’s
functions corresponding to the vector and scalar potentials  Riwm, Te(?)
are written as . . . .
. _ + Riite + Rt Ritiqg e 72049 | — for TM
G = g dk e, HP(k,0)G*k,)  (10) 1 — Rinie Ring e e 72 + for TR
T Jsip
(12d)
o R+ RE Rbrh e ) — for T™ |
Rim, 1e(2) = 71 _ R~z,i+] R t——l —jkz2d; (12e)
T™,TE f8 T™, TE € + for TE
where ] and R4, 15 are the generalized TM and TE reflection coef-
G4 is the Green’s function of the vector potential in ficients at th.e interface between regions i ar}d i+ 1, W.]thh
the spectral domain are defined in terms of the Fresnel reflection coeflicients
G? s the Green’s function of the scalar potential in [1b1]: ThefGre;:,n sbfunctlc?ns grven by (101a; andh(llb) are
the spectral domain obtained for the observation point z € [0, d;, — h].
2 . - .
HY is the Hankel function of the seconfi kind B. Quasi-Static Images and their Contributions
SIP  stands for the Sommerfeld Integration Path.

The procedure for deriving closed-form expressions for
the Green’s functions entails the following steps:

To obtain the spatial domain counterparts of the spec-
tral Green’s functions given in (11a) and (11b), it is nec-
essary to evaluate their inverse Hankel transforms, as for
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Fig. 2. Substrate-superstrate geometry.

instance in (10). In general, the inversion integral in (10)
can not be evaluated analytically. However, for the quasi-
static images that are exponential approximations of the
spectral domain Green’s functions as k, = 0, the inverse
Hankel transform can be evaluated analytically by using
the Sommerfeld identity. Since the quasi-static fields are
defined in the range in which the observation distance is
much smaller than the free-space wavelength (o0 << M),
they correspond to the asymptotic components (k, = o)
of the Green’s functions in the spectral domain. There-
fore, the subtraction of these quasi-static terms from the
Green’s functions (11a) and (11b) makes the remaining
integrands of (10) decay faster for large k,. From (12a)
and (12b), we note that we only need the asymptotic terms
of the reflection coefficients Rrg’s and R;’s, which are de-
noted here as Rygo and Ry, and are given by

R%LEO = 0

- o ask, > 0
RTEOz —e JRzds - |

RY ~ —j 2k b +
RqO = I(i,i+1(1 —“ I(i—l,i)e J2keh +2)

o — —j 2k 1dy —
RqO = Ki—l,i[l — Ki—l,ie J 2kzids <1

+ I(t i1 e_JZku(dn"h—Z)]

where K; ;11 = (6 — €i+1)/(6n + € ) 2nd K ; =
(eri-1 — &)/ (€rim1 t+ €5)-

After extracting the contributions of the quasi-static
components, the Green’s functions, given in (10), can be
rewritten as

ask, > 0
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—jkird —jkire2
G — 1 e’ Kiiv1e? K K1,
0 = _
7 e, 14 4me; 1y 4e,
ehm K e (- KE )
¥i3 47!'6,' Fig 47('6,'
e ks K i1 Ki_1,e s
. - (14b)
Fs 47I'Ei i

ra=o2 + 2% ry=or + (2 + 2k + 2d;_ )%
rix = No® + Q2d; — 2h — 2%
"i3=m; ri4=m;
ris = Vot + Qdi_, + z + 2h)%

re = Vo> + d; — 2.

Note that the first term in both (14a) and (14b) represents
the direct field, i.e., the response of a point source in an
infinite medium with wavenumber k;, while the remaining
terms in the expressions for the vector and scalar poten-
tials are the real images, one for the former and five for
the latter.

C. Surface-Wave Poles and their Contributions

It is well-known that the Sommerfeld integrals for lay-
ered media contain a certain number of poles and branch
singularities and that these singularities are associated
with the surface, leaky and lateral waves launched by the
source. Among these, the surface waves play a rather sig-
nificant role as they are guided along the interface without
leaking energy. The corresponding pole singularities are
located on the real axis of the k,-plane and must be han-
dled properly. Even if the integration path is deformed
such that it is not too close to these pole singularities,
their presence still affects the value of the integral for
small values of k,. It is helpful to extract these singular-
ities from the integrand before employing Prony’s method
to approximate it, because this helps smooth the integrand

o+ ,—jku(di—2h —2) - _ P —jkz(z + 2h)
b 2 R1ge + (Rtg — Rimo)e
Gy = ”+—S dke ke, HP (k 13
4 7 4r dsp PO *ep) J2ky (13
G, = Gyo + — S dk, k,H$(k,p)
q q0 47e; Jsp pTptl0 Ry
Ris + R} — Rjo) e704~%=9 4 Riy + Ry — Ry — Ryp) e+
: , (13b)
J 2kzi
where apd renders it easier to approximate via the Prony algo-
~jkird —jkirit nthr.n' .
x _ P € _ ke (142) Since the surface-wave poles always occur in complex
7 4x ry 4T r; conjugate pairs, a typical pair can be represented mathe-
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matically as
2k,,(Residue at k,,)
kIZJ - kxz)p

where k,, is the surface-wave pole. By subtracting these
poles from the integrands (132) and (13b), and analyti-
cally evaluating their contribution via the residue calculus
technique, we can derive the following representation for
the spatial domain Green’s function for the vector poten-
tial:

" Filk
G:‘f = “:{B + Gi’;w + N S dk k H(Z)(k p) —L? 1€ p)
4r J- Jj2k,;
(15)
where
Nt poo 2% : Resl(i)
o = ” 2 S dk ke, HP(k,p) ;P“—
Temhes ky = Koy
I NTE ‘
T 4r (=/2m i§1 k""(i)Hf’Z)(kpp(z)p) Res1®  (16a)
Fik,) = Rip e Maa—2k=2 4 (Ro. _ Ripo) e e+ 20)
NTE 2k ;) Res1?
2 __’JEQ—_ 16b
o l—ll k2 kpp(t) (16b)
o e"‘jk:z(zdx -2h—2) _
Res1® = - — lim (ko ~ kopi) Riy
J 2kz i ko = kpp(!) = kop( PpOITITR
e‘jk:z(zh +2) _
k. lim (k, — ko)) Rrg.
J2k; Ay - oty o = 000 0 op()) NTE
(16¢)

Similarly, for the Green’s function for the scalar poten-
tial, we can write

1 (” Fyk,)
= G,0 + G,y + — S H® 2(K,)
% 20 + Gy, 4we, J- dk ks (kop) =7 Jok,,
17
1 MY Sm 2k, Res2®
Ggow = 7— 2 ik HO( p) 20 =27
" dme, =1 —o PO e0) kz kpp(t)
1 NTE+NTM
- A?E— (_‘]271.) l.gl kPP(i) HgZ)(kpp(i) p) RCSZ(’)
(18a)
Fyk,) = Big + Rf — Rjp) e heh—2:-2
+ (R'FE + Rz, - Rq() — I_e'ltEO) o e +2h)
NTE+NT™ 2/( o RCSZ(i)
=2 ;1 “—0—‘“ (18b)

k2

pp(l)
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o —jkziQ2dy — 2h — 2)
i)
Res2 J 2kzi kp = kppt)
—- k2
lim (kp - kppTE(i)) R;—E < 1+ _ZZ >
ko = kopTE() p
k2
lim  (k, — kprmey) RTM < ‘_zz>
kp = kopT™O) p
e—jk;;(Zh +2)
* J 2kzi ko = kop(i)
— k2
lim (k},J — kppTE(,-)) Rig < 1+ % >
kp = kopTE() k 0/
_ k2
lim (kp - kppTM(l)) R’;M < __ZZI->
kp = kopT™MO) kp
(18¢)

The Green’s functions given in (15) and (17) can be either
evaluated numerically or approximated by their closed-
form expressions. The approximation procedure will be
detailed in the next section.

D. Approximation of the Remaining Integrands

In this step, Fi(k,) and F,(k,), given in (16b) and (18b),
respectively, are approximated in terms of complex ex-
ponentials by using the least square Prony’s method [12],
{13]. In order to be able to use the Sommerfeld identity
for the exponentials obtained from the approximations of
F(k,) and F,(k,), these exponentials should be functions
of k,; which is a complex number in general. Since
Prony’s method is applicable to complex functions with
real variables, we need to transform the complex variable
k,; into a real variable ¢ by a parametric function [2], [3],
defined as '

kn=KPﬁ+<1—iﬂ,05t5% (19)
T

which maps ¢ € [0, T,] into kz, € [k, —jk;T,]. Since T,
corresponds to k[1 + T2]'/? in the k,-plane, the choice
of T, is dependent upon the behavior of the integrands to
be approximated for large k,. Both F\(k,) and F,(k,) are
uniformly sampled along the integration path C, which
corresponds to the real variable ¢, and approximated in
terms of exponentials of the variable 7, or &, as follows:

Nn

Nn
Fiky) = 2 age™ = 21 bye™™",  n=1,2 Q0
=1 1=

where b,; and 3,, are written in terms of a,; and a;

To . — Bmkl
Bm’ = Oy k,(l +J.TD), ni = Qui € .

Next, the integrals in (15) and (17) are evaluated analyt-
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ically by using the Sommerfeld identity to yield

M _]klrll
oo K og 1) _ #osh €
ot = 4 Sc R T
(21a)
Fy(k,)
= @ 22\%p/
oo = fme. Sc sk, H 5" Uepp) 2k,
N2 —1k,
1 JKiF2
=— 3 by S (21b)
4me, =1 ry,

where r,; and r,, are complex numbers; hence, each of the
terms in the above series is referred to as the contribution
of a complex image.

In Prony’s method, the required number of sampling
points is at least twice the number of exponentials to be
used in the approximation. If the number of sample points
is chosen to be exactly twice the number of exponentials,
the approximation will be exact only at the sampling
points, and there will be no guarantee that it would be
accurate elsewhere. It is therefore essential to take as
many samples as necessary to ensure the capture of any
rapid variation of the function being sampled. Conse-
quently, the number of sampling points is usually taken
to be much higher than twice the number of exponentials;
this prompts us to use the least square Prony’s method,
which is designed to handle this situation.

IV. REsULTS AND DiIscussioNs

Following the procedure described above, we have de-
rived the closed-form Green’s functions for the vector and
scalar potentials for a horizontal electric dipole located at
the interface between the substrate and superstrate as
shown in Fig. 2. Their expressions are given by

e Mt e Jm NtE
R R b =L e LU P
U M e"Jkt"h
* kopiyH P (Kypyp) Res1® + p 2 by -
(22a)
G - 1 ehm Ky e _ K, 1Ky, et
7 dxe; 1y dre, 1, 47e; r'n
Ko e (1=K, e
B dmwe; ry B 4me; Fs
KKy e ke . NTE%NTM
4e; Fig 2¢, 1=1
- ko HOk @ L % et
oy o (Kopiyp) Res2® + dme, 2 by; )
(22b)

where Nrg and Ny are the numbers of TE and TM sur-
face-wave poles, and N; and N, are the numbers of com-

—Exact
--@ - Apprx.

-9 o i l l
I 1 1 ¥ T
25 2 -15 -1 05 0

Log,,(ks*p)

1.5

Fig. 3. The Green’s function for the vector potential; magnitude and phase.
€, =12.5,d,_, = 0.07 cm, d, = 0.03 cm, freq = 30 GHz.

plex images for the vector and scalar potentials, respec-
tively.

For the sake of illustration, we have chosen GaAs (e,
= 12.5) with a thickness of 0.03 cm and teflon (¢, = 2.1)
with a thickness of 0.07 cm as the superstrate and sub-
strate materials, respectively. Two surface-wave poles
have been found for this geometry at the frequency of 30
GHz, one for TM at k, = 7.38457 and the other for TE
at k, = 6.49447. Figs. 3 and 4 compare the magnitude
and phase of the Green’s functions obtained from the nu-
merical integration of (15) and (17) with those computed
from the closed-form expressions in (22a) and (22b) for
an operating frequency of 30 GHz. The time savings re-
alized from the use of the closed-form expression is sub-
stantial, approximately three orders of magnitude in this
case, and yet the agreement is excellent between the two
results.

In the example given above, the thickness of the sub-
strate is about one-tenth of the wavelength in the dielec-
tric medium of the substrate, which is not particularly thin.
Thus, we consider another example of a microstrip ge-
ometry for which the dielectric constant and the substrate
thickness are 4.0 and 0.02032 cm, respectively. The fre-
quency of operation is now chosen to be 1 GHz and, for
these parameters, the substrate thickness is only 0.00135
in terms of the wavelength in the medium and only one
TM surface-wave pole exists, located at k, = 0.20944. In
this example, we have used two and four complex images
for the closed-form representations of the Green’s func-
tions for the vector and scalar potentials, respectively,
i.e., have chosen Ny = 2 and N, = 4 in (22a) and (22b).
As can be seen from Figs. 5 and 6, the closed-form
Green’s functions and the numerically integrated Som-
merfeld integrals are found to be in very good agreement
up to a moderate distance between the observation and
source points, beyond which the closed-form approxi-
mation begins to deviate somewhat from the exact Green’s
functions. Although it is possible to employ asymptotic
approximations [14] to derive more accurate representa-
tions of the Green’s functions for large p, this is often
unnecessary because the size of the conductors on a sub-
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Fig. 4. The Green’s function for the scalar potential; magnitude and phase.
€, =12.5,d,_, = 0.07 cm, d; = 0.03 cm, freq = 30 GHz.
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Fig. 5. The Green’s function for the vector potential; magnitude and phase.
€, =4.0,¢, = 1.0,d,_; = 0.02032 cm, freq = 1.0 GHz.
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Fig. 6. The Green’s function for the scalar potential; magnitude and phase.
€, =4.0,¢, =1.0,d_, = 0.02032 cm, freq = 1.0 GHz.

strate is usually on the order of a wavelength or less, and
the closed-form representations of the Green’s functions
are usually adequate.

We conclude this section by observing that the proce-
dure given above is quite general and is applicable to a

wide range of frequencies and material parameters, and
yet its use results in savings of computation time in the
calculation of the Green’s functions as well as in the ap-
plication of the MoM to microstrip problems.

CONCLUSIONS

In this paper we have presented a numerically-efficient
technique for deriving closed-form approximations for the
spatial domain Green’s functions for microstrip geome-
tries that find important applications in the numerical
modeling of microstrip antennas and circuits. The accu-
racy of the procedure has been demonstrated via repre-
sentative numerical examples.
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