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Derivation of Closed-Form Green’s Functions for a

General Microstrip Geometry
M. Irsadi Aksun and Raj Mittra, Fellow, IEEE

Abstract—The derivation of the closed-form spatial domain
Green’s functions for the vector and scalar potentials is pre-
sented for a microstrip geometry with a substrate and a super-
strata, whose thicknesses can be arbitrary. The spatial domain
Green’s functions for printed circuits are typically expressed

as Sommerfeld integrals, that are inverse Hankel transform of
the corresponding spectral domain Green’s functions, and are

quite time-consuming to evaluate. Closed-form representations

of these Green’s functions in the spatial domains can only be

obtained if the integrands are approximated by a linear com-
bination of functions that are analytically integrable. In this

paper, we show we can accomplish this by approximating the
spectral domain Green’s functions in terms of complex expo-
nential by using the least square Prony’s method.

I. INTRODUCTION

T HE RIGOROUS analysis of printed circuit elements,

such as microstrip interconnects terminated by com-

plex loads, microstrip discontinuities, patch antennas and

printed dipoles, requires the use of the vector and scalar

Green’s functions for a substrate layer backed by a ground

plane. It is well-known that the Green’s functions for mi-

crostrip geometries are improper integrals [1], also called

Sommerfeld integrals, whose integrands are oscillatory

and S1OW1y decaying functions; hence, their calculation is

very time-consuming if not impractical for many practical

configurations of interest. However, recently a novel ap-

proach to circumventing this problem has been developed

[2], [3], one that employs closed-form expressions for the

spatial domain Green’s functions corresponding to the

vector and scalar potentials associated ‘with a horizontal

electric dipole (HED) located over a thick substrate. In

this paper, this technique is extended to a general class of

microstrip geometries with both a substrate and a super-

strata, and the restriction imposed on the thickness of the

substrate is relaxed by slightly modifying the original pro-

cedure.

Using the closed-form expressions for the spatial do-

main Green’s functions in a variational technique, e.g.,

the method of moments (MoM), can result in a substantial

savings of computation time when analyzing planar mi-

crostrip structures. Once the improper infinite range in-
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tegrals for Green’s functions have been expressed in

closed-forms, the rest of the integrals need only be com-

puted over finite supports associated with the basis and

testing functions. In view of this, it would be instructive

to demonstrate the difficulties that one may face in the

application of the conventional moment method approach

to microstrip geometries, before starting the derivation of

the closed-form Green’s functions for the vector and sca-

lar potentials. It is well-known that MoM can be applied

either in the spatial domain [4] or in the spectral dom~ain

[5], the latter being more suitable for planar geometries

unless the spatial domain Green’s functions can be ap-

proximated in closed-forms [6], [7]. Both approaches will

be briefly examined here with a view to comparing their

computational efficiency.

An important issue that merits examination in the MoM

formulation is the convergence problem of the integrals

representing the MoM matrix. The expressions of these

elements in the spatial and spectral domains are given in

Section II and the difficulties associated with their evalu-

ation are discussed. This is followed in Section III with

the derivation of the closed-form Green’s functions of the

vector and scalar potentials for a microstrip geometty with

a substrate and superstrata, whose thickness are arbitrary

A discussion of the technique employed for the derivation

of the closed-form expressions and some numerical ex-

amples are included in Section IV.

11, COMPUTATIONAL DIFFICULTIES IN THE

CONVENTIONAL METHOD OF MOMENTS

Consider, for the sake of illustration, a general micro-

strip structure shown in Fig. 1 where h is assumed that

the substrate layer extends to infinity in the transverse di-

rections. Let the thickness and the permittivity of the sub-

strate be denoted by d and ~,, respectively. Although the

Green’s functions discussed herein pertain to the geome-

try shown in Fig. 1, the comments appearing in this sec-

tion apply to more general geometries as well. A time

convention of e ~“t has been adopted in this work.

A. Spatial Domain Analysis

The tangential electric fields on the plane of the patch

(Z = 0) can be written in terms of the surface current den-
sity J and the Green’s functions for the vector and scalar
potentials ~~ and ~~, respectively;

EX=–jtiG~* JX+~g[Gq*V. J] (la)
J@ ax

0018-9480/92$03.00 @ 1992 IEEE



2056 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 1I , NOVEMBER 1992

I 1/
‘

Y

/

atch

Fig. 1. A general microstrip structure.

la
Ey= –juG~y* Jy+J; &[ Gq*V” J1 (lb)

where * implies convolution excepting where it is super-

script denoting complex conjugation of a function.

To solve for the surface current density on the patch by

the MoM, the first step is to expand the surface current

densities in terms of a linear combination of the basis

functions as follows:

JX = ~ A~JX~(x, y) (2a)
n

JY = ~ B~JY~(x, y) (2b)
n

where An and B~ are the unknown coefficients of the basis

functions, JI. and JY.. Next we substitute (2) into (1) and

test the resulting equations using some testing functions

TX~ and TY~ and a suitable definition of inner product, e.g.,

(f, g) =
!!

& dy f *(x, y)g(x, y). (3)

Since the testing functions and the tangential electric fields

have nonzero values over complementary regions, the left-

hand sides of ( la) and (lb) become zero after the testing,

and the following algebraic equations are obtained for the

coefficients A. and B.:

(4a)

(4b)

The first inner product term is written below as an ex-

ample

{ Ln, Gh “ J,. )

. H(ix dy TXn(x, y)
i!

dx’dy ’

D(T) D(B)

“ G:(x ‘X’, y ‘y ’) JXn(X’, y’) (5)

where D(T) and D(B) represent the domain of the testing

and basis functions, respectively, and

G~(P) = ~
!

~m ~~ dkPkPH~2)(kPp)G& (k,). (6)

In general, each inner product term in the spatial do-

main, e.g., the one given in (5), is a five-dimensional in-

tegral: one of these is associated with the Green’s func-

tion itself which is an improper integral (Sommerfeld

integral) over an infinite domain and is given in (6); two

of these are convolution integrals; and, the remaining two

are inner products. Since the numerical integration of the

five-dimensional integrals is computationally intensive,

the convolution integral over the Green’s function and the

basis functions is often transferred over to the basis and

testing functions, enabling one to carry out this integral

analytically. With this step, the order of integration can

be reduced to three. In spite of this, the evaluation of the

inner product is still very time-consuming because of the

slow convergence behavior of the integrands of the

Green’s function.

B. Spectral Domain Analysis

The tangential electric field on the plane of the patch

due to the patch currents JX and JY can be expressed in the

spectral domain as

E, (k,, kY) = .Z~ (k., k,) ~x (kx, kY) + ~.Y(k.> k,) ~Y(k.> ky)

(7a)

~y(k., kY) = ZYX(kx, ky) ~. (k., kY) + ~Yy(k.> kY) ~y(k., kY)

(7b)

where - implies Fourier transforms, and the electric field

Green’s functions Zti in the spectral domain are express-

ible in closed-forms [8]. The application of the moment

method starts with the expansion of the current densities
as in (2), substitution of the Fourier transforms of these

basis functions in (7), followed by the testing with the

Fourier transforms of the testing functions. Following this

procedure one arrives at the following algebraic equa-

tions:

~ Am( ~X~, ~u~X~ ) + ~ B.{ ~X~, ~XY~Y~) = O
n n
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where the inner products are defined over an infinite do-

main. The first inner product term is written as

m

—co

o .Zu(kI, kY) Ty.(k,, kY). (9)

Since the Green’s functions in the spectral domain are ex-

pressible in closed forms, the elements of the MoM ma-

trix become double integrals (9) over infinite ranges.

However, one of the integrations could be transferred over

to the finite domain by transforming the cartesian coor-

dinates into polar coordinates. As a consequence, for mi-

croitrip geometries, the spectral domain moment method

can be more efficient than the conventional spatial domain

approach which requires the computation of triple inte-

grals. The spectral domain approach is usually employed

in conjunction with an acceleration technique in which the

asymptotic part of the Green’s function is subtracted from

the original Green’s function, and its contribution is cal-

culated either analytically or in a numerically efficient

manner [9], [10]. Even so, this computation is still ex-

pensive because the integrands are oscillatory functions

of the spectral domain variables, and for the self-terms,

for which the observation segment coincides with the

source segment, the convergence is still quite slow.

III. CLOSED-FORM GREEN’S FUNCTIONS FOR THE

VECTOR AND SCALAR POTENTIALS

One remedy for the aforementioned convergence prob-

lem is to express the spatial domain Green’s functions in

closed forms so that the inner products become two-di-

mensional integrals over finite ranges (see Section II-A),

and the time-consuming part of the moment method in the

spatial domain, which entails the evaluation of the inte-

gral representations of the Green’s functions, is com-

pletely avoided. The Sommerfeld integrals for the Green’s

functions corresponding to the vector and scalar potentials

are written as

(#>q = ~

[
dkpkPH:2)(kop)~A’ ‘(k.) (lo)

4T , SIP

1.

2.

3.

4.

This

:2057

Obtain the Green’s functions for the vector and sca-

lar potentials in the spectral domain.

Find the quasi-static images (real images) and their

contributions by using the Sommerfeld identity.

Find the surface-wave poles and calculate their con-

tributions analytically.

Approximate the remaining integrand, which is now

a smooth and relatively rapidly decaying function

of the integration variable kp in (10), can be approx-

imated in terms of complex exponential using the

least square Prony or the Pencil of Function method.

technique is demonstrated, step by step, for a planar

geometry with a substrate and a superstrata of arbitrary

thicknesses and dielectric constants, as shown in Fig. 2.

A. Green’s Functions for the Vector and Scalar

Potentials in the Spectral Domain

For the geometry shown in Fig. 2, the Green’s func-

tions in the spectral domain can be written as

(II la)

‘q”&[TTE+$(TTE+k$TTM)l ‘llb)
where

~T~= [e–Mz + ~;Ee –jk:i(2di – 2h – Z) + ~;Ee –Jkzt(.? + ‘2h) ]

(12a)

(12d)

(12e)

where and Z?~~#E are the generalized TM and TE reflection coef-

‘A
G

ficients at the interface between regions i and i + 1, which
is the Green’s function of the vector potential in

the spectral domain
are defined in terms of the Fresnel reflection coefficients

Gq is the Green’s function of the scalar potential in
[11]. The Green’s functions given by (1 la) and (1 lb) are

the s~ectral domain
obtained for the observation point z ● [0, di – h].

H$2) is the Hankel function of the second kind B. Quasi-Static Images and their Contributions
SIP stands for the Sommerfeld Integration Path.

To obtain the spatial domain counterparts of the spec-

The procedure for deriving closed-form expressions for tral Green’s functions given in (1 la) and (1 lb), it is nec-

the Green’s functions entails the following steps: essary to evaluate their inverse Hankel transforms, as for
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Fig. 2. Substrate-superstrate geometry.

instance in (10). In general, the inversion integral in (10)

can not be evaluated analytically. However, for the quasi-

static images that are exponential approximations of the

spectral domain Green’s functions as k. ~ O, the inverse

Hankel transform can be evaluated analytically by using

the Sommerfeld identity. Since the quasi-static fields are

defined in the range in which the observation distance is

much smaller than the free-space wavelength (p << k),

they correspond to the asymptotic components (kP ~ m)

of the Green’s functions in the spectral domain. There-

fore, the subtraction of these quasi-static terms from the

Green’s functions (1 la) and (1 lb) makes the remaining

integrands of (10) decay faster for large kp. From (12a)

and ( 12b), we note that we only need the asymptotic terms

of the reflection coefficients RTE’s and Rq’s, which are de-

noted here as RTEOand Rqo, and are given by

R;Eo= o 1asko+O
i?&. = – e-jkz’d’ -‘

R;. = )–Ki-l, i[l – Ki_l, i e-j2kz’d’-’ as k. + ()

+ IQ+ ~ e-J2k’’(d’ ‘h ‘z)]

where Kt, i + 1 = (~ri – ~,i+l)/(e,i + Cti+l) and Ki--l,i =

(eri -1 – ‘ri)/(eri -1 + ~j-i).

After extracting the contributions of the quasi-static

components, the Green’s functions, given in (10), can be

rewritten as

1 e -jk,rd
~ Ki, i + ~ e-lk’”2 K1,i+lKi_l, i

c..—— — _
-qu

)-d =

riz =

ri3 =

ris =

riG =

e –jkir,s Ki, ~+ ,Ki - ,,i e-jk’r’G.— —
r15 4T~i riG

(14b)

JTi?; r,, = 4 p2 + (Z + 2h + 2di-l)2;

JP2 + (2di – 2h – .Z)2;

~P2 + (2di + .Z)2; riq = JP2 + (Z + 2h)2;

Jp2 + (2di-1 + Z + 2h)2;

JP2 + (z~i – Z)2.

Note that the first term in both (14a) and ( 14b) represents

the direct field, i.e., the response of a point source in an

infinite medium with wavenumber ki, while the remaining

terms in the expressions for the vector and scalar poten-

tials are the real images, one for the former and five for

the latter.

C. Surface-Wave Poles and their Contributions

It is well-known that the Sommerfeld integrals for lay-

ered media contain a certain number of poles and branch

singularities and that these singularities are associated

with the surface, leaky and lateral waves launched by the

source. Among these, the surface waves play a rather sig-

nificant role as they are guided along the interface without

leaking energy. The corresponding pole singularities are

located on the real axis of the kP-plane and must be han-

dled properly. Even if the integration path is deformed

such that it is not too close to these pole singularities,

their presence still affects the value of the integral for

small values of k.. It is helpful to extract these singular-

ities from the integrand before employing Prony’s method

to approximate it, because this helps smooth the integrand

G~=G~o+L ! dkPkPH~2)(kPp)
i7~~e-jk’’c2d’ - 2h- 3) + (11~~ – l?.&O)e-lk”(’ + 2h)

4X SIP j 2kZi

1
G~=Gqo+—

!
dk, kPH$2)(kPp)

4T~i SIP

(R;E + q- – ~:o~ e-jk,i(2d, - 2h – z)
+ (n;E + z; – ~~Eo – ~;o) e-jk,,(z + 2h)

.

j 2kZ i

(13a)

(13b)

where and renders it easier to approximate via the Prony algo-
rithm.

(14a)
Since the surface-wave poles always occur in complex

conjugate pairs, a typical pair can be represented mathe-
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2k~,(Residue at kOJ

where kPP is the surface-wave pole. By subtracting these

poles from the integrands (13a) and ( 13b), and anal~ti-

cally evaluating their contribution via the residue calculus

technique, we can derive the following representation for

the spatial domain Green’s function for the vector poten-

tial:

s@f=GYo+G3L+~ m Fl(kp)
41r -m

dkPkPH;2)(kPp) —
j2kZ i

(15)

where

NTE co 2kPP(i)Resl(i)
~ ~ dkPkOH$2)(kPP) k2 _ k2G?.. = &,=l

—co Q PP(O

NTE

= ~ ( –jzd ~~1 kPP(i)H$2)(kPP(~)p) R@(i) (16a)

(16b)

e -jkz,(2d, – 2h – z)
Resl(i) = — lim (kp – kpp(i))~~E

j2kz i kp = kpp(,) ko - kw(o

~ –jk:,(2h + z)

+ —— lim (kP – kpp(i))~~E.

j2kz i k~ = kop(t, kp 4 PP(i)

(16c)

Similarly, for the Green’s function for the scalar poten-

tial, we can write

m

Gq = Gqo + Gq.M, + -+
[

dkPkpH;2)(kpp) -
L —m j 2kz,

(17)

1
NTE + NTM co

G qsw = —
41re’ i~l J-a ‘kpkpH:2)(kPp) 2&~~2s2(’)P w(i)

NTE + NTM

= & (-j2~) ~ kPP(i)H~)(kP~(i) p) Res2(’)
1 i=l

(18a)

F2(kp) = (i?~~ + R$ – R~O) e-jk’’(zd’ - 2h-‘)

+ (~’& + ~q – R@ – ~~~o) ~ -jk,,(z + 2h)

‘T’ + ‘TM 2kPP(i) Res2(i)
– j2kzi z

k% – k;p(z)
(18b)

j=l

e –jkzt(2dt – 2h – z)

Res2(i) =
j 2kz i kP= kop(,)

( 18c)

The Green’s functions given in (15) and (17) can be either

evaluated numerically or approximated by their closed-

form expressions. The approximation procedure will be

detailed in the next section.

D, Approximation of the Remaining Integrands

In this step, Fl(kp) and F2(kP), given in (16b) and (18b),

respectively, are approximated in terms of complex ex-
ponential by using the least square Prony’s method [12],

[13]. In order to be able to use the Sommerfeld identity

for the exponential obtained from the approximations of

Fl(kp) and Fz(kp), these exponential should be functions
of kzi which is a complex number in general. Since

Prony’s method is applicable to complex functions with

real variables, we need to transform the complex variable

kzi into a real variable t by a parametric function [2], [3],

defined as

‘Z=kb’+(’-i)lOsts TO’19)
which maps t e [0, TO] into kzl 6 [ki, –jkiTO]. Since TO

corresponds to kl[ 1 + T ~] i /2 in the kp-plane, the choice

of TOis dependent upon the behavior of the integrands to

be approximated for large kp. Both Fl(kp) and F2(kp)l are

uniformly sampled along the integration path C, which

corresponds to the real variable t, and approximated in

terms of exponential of the variable t, or kzi, as follows:

N.

F.(kP) = ,~1 a.i can” = ~ b,,, e-&,&, n = 1, 2 (20)
,=1

where b~i and (3~tare written in terms of a~i and CY~i

pni = (-Jni ‘“ b~i = afii e~”’k’.
ki(l +jTO);

Next, the integrals in (15) and ( 1’7) are evaluated an,alyt-
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ically by using the Sommerfeld identity to yield

! FI (k.)
NI ~–jkt n,

G~Ci = ~ ~ dk~k~H~2)(kQP) — = ‘~bli—
j2kz i 47fi=l rl,

Gqcl = -+ ! FA$J
dkPkOH;2)(kpp)—

L c j 2kz i

(21a)

(21b)

where rl i and r21 are complex numbers; hence, each of the

terms in the above series is referred to as the contribution

of a complex image.

In Prony’s method, the required number of sampling

points is at least twice the number of exponential to be

used in the approximation. If the number of sample points

is chosen to be exactly twice the number of exponential,

the approximation will be exact only at the sampling

points, and there will be no guarantee that it would be

accurate elsewhere. It is therefore essential to take as

many samples as necessary to ensure the capture of any

rapid variation of the function being sampled. Conse-

quently, the number of sampling points is usually taken

to be much higher than twice the number of exponential;

this prompts us to use the least square Prony’s method,

which is designed to handle tjiis situation.

IV. RESULTS AND DISCUSSIONS

Following the procedure described above, we have de-

rived the closed-form Green’s functions for the vector and

scalar potentials for a horizontal electric dipole located at

the interface between the substrate and superstrata as

shown in Fig. 2. Their expressions are given by

–Jk,rd –jk,r, I NTE

G~=&%_~e

4T r~ 41r r,,
+ -& (–j2~) Z

i=l

NI ~–]k,rlr

- kpP(i)H$2)(koP(i)P) Res 1
(O+~~bli-

4T i=] rll

Ki, i + ,Ki - ,,i e-J~’r” _ ~ ‘TE$NTM—
4K6i ric 2eL 1=1

(22b)

where NTE and NTM are the numbers of TE and TM sur-

face-wave poles, and NI and N2 are the numbers of tom-
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Fig. 3. The Green’s function for the vector potential; magnitude and phase.
e,, = 12.5, d,-, = 0.07 cm, d, = 0.03 cm, freq = 30 GHz.

plex images for the vector and scalar potentials, respec-

tively.

For the sake of illustration, we have chosen GaAs (e,

= 12.5) with a thickness of 0.03 cm and teflon (~, = 2.1)

with a thickness of 0.07 cm as the superstrata and sub-

strate materials, respectively. Two surface-wave poles

have been found for this geomet~ at the frequency of 30

GHz, one for TM at kP = 7.38457 and the other for TE

at k. = 6.49447. Figs. 3 and 4 compare the magnitude

and phase of the Green’s functions obtained from the nu-

merical integration of (15) and (17) with those computed

from the closed-form expressions in (22a) and (22b) for

an operating frequency of 30 GHz. The time savings re-

alized from the use of the closed-form expression is sub-

stantial, approximately three orders of magnitude in this

case, and yet the agreement is excellent between the two

results.

In the example given above, the thickness of the sub-

strate is about one-tenth of the wavelength in the dielec-

tric medium of the substrate, which is not particularly thin.

Thus, we consider another example of a microstrip ge-

ometry for which the dielectric constant and the substrate

thickness are 4.0 and 0.02032 cm, respectively. The fre-

quency of operation is now chosen to be 1 GHz and, for

these parameters, the substrate thickness is only 0.00135

in terms of the wavelength in the medium and only one

TM surface-wave pole exists, located at k. = 0.20944. In

this example, we have used two and four complex images

for the closed-form representations of the Green’s func-

tions for the vector and scalar potentials, respectively,

i.e., have chosen NI = 2 and N2 = 4 in (22a) and (22b).

As can be seen from Figs. 5 and 6, the closed-form

Green’s functions and the numerically integrated Som-

merfeld integrals are found to be in very good agreement

up to a moderate distance between the observation and

source points, beyond which the closed-form approxi-

mation begins to deviate somewhat from the exact Green’s

functions. Although it is possible to employ asymptotic

approximations [14] to derive more accurate representa-

tions of the Green’s functions for large p, this is often

unnecessary because the size of the conductors on a sub-
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Fig. 5. The Green’s function for the vector potential; magnitude and phase.
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Fig. 6. The Green’s function for the scalar potential; magnitude and phase.

e,,–, = 4.0, e,, = 1.0, d,-, = 0.02032 cm, freq = 1.0 GHz.

strate is usually on the order of a wavelength or less, ,and

the closed-form representations of the Green’s functions

are usually adequate.
We conclude this section by observing that the proce-

dure given above is quite general and is applicable to a

wide range of frequencies and materjal. parameters, and

yet its use results in savings of computation tirn? in the

calculation of the Green’s functions as well as in the ap-

plication of the MoM to microstrip problems.

CONCLUSIONS

In this paper we have presented a numerically-efficient

technique for deriving closed-form approximations for the

spatial domain Green’s functions for microstrip geonle-

tries that find important applications in the numerical

modeling of microstrip antennas and circuits. The accu-

racy of the procedure has been demonstrated via repre-

sentative numerical examples.
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